大家好,今天小编关注到一个比较有意思的话题,就是关于动手深度学习python的问题,于是小编就整理了1个相关介绍动手深度学习Python的解答,让我们一起看看吧。
深度学习如何从菜鸟入门?
深度学习目前的应用领域很多,主要是计算机视觉和自然语言处理,以及各种预测等。对于计算机视觉,可以做图像分类、目标检测、视频中的目标检测等,对于自然语言处理,可以做语音识别、语音合成、对话系统、机器翻译、文章摘要、情感分析等。
对于刚入行深度学习,想从事人工智能工业应用和研发的小白来说,选择一个适合自己的深度学习框架显得尤为重要。那么在选择深度学习框架的时候,要注意哪些内容呢?
通常我们在选择框架时要考虑易用性、性能、社区、平台支持等问题。初学者应该考虑容易上手的框架,偏工业应用的开发者可以考虑使用稳定性高、性能好的框架,偏研究性的开发者,一般选择易用而且有领先的模型基线的框架。
目前这个阶段,TensorFlow因为背靠谷歌公司这座靠山,再加上拥有庞大的开发者群体,而且***用了称为“可执行的伪代码”的Python语言,成为最受欢迎的主流框架之一。一些***的第三方库(如Keras、TFLearn)也基于它实现了很多成果,Keras还得到TensorFlow官方的支持。TensorFlow支持的上层语言也在逐渐扩大,对于不同工程背景的人转入的门槛正在降低。
因此,对于刚入行深度学习的小白,TensorFlow是一个非常好的选择,掌握TensorFlow对以后的求职发展很有帮助。
想要入门深度学习,因为它实在涉及了太多方面,所以其中所需要学习的东西也不少,虽然我学习深度学习的时间不算久,但是在学习中还是有自己的一些方法和历程,主要有三个:
看***
***教学现在变成大多数人会想到的首要自学方式了,在网易云课堂等平台上你会发现有很多的***都是在讲深度学习或者机器学习知识的。但是有一些***都是要付费的,而且会顺便教你 Python,但是我个人是没有去看这些课程,我推荐可以去看 Andrew Ng 的 DeepLearning.ai 的***,在网易云课堂上也能搜到免费的课程,课后的编程作业可以上网搜索。这个课程好在每个***都很浅显直观地说明一个知识点,平均每个***有 7 分钟,很短。全部看完结合作业的理解,也算是对深度学习有了个基本的认识。如果想要看原版的***及作业,可以去 Coursera 上付费观看,会提供课后作业并且帮你批改,还有社区交流,当你全部学完后还会给你颁发毕业证。
会实现
学习深度学习一定要会的一个语言就是 Python 了,你会发现基本上所有教深度学习的公开课上都会或多或少讲到 Python 的知识。所以如果你对于编程感兴趣,那么一个很好的方法就是试着使用代码去实现。我试过完全自己用 Python 写一个简单神经网络的代码,写完之后发现自己更加的知道其中的原理了。还有一个比较有趣的就是去 GitHub 上找一些项目,去跑。例如有 TensorFlow 风格转换项目,目标跟踪类的,没准跑着跑着突然就有个想法,想要试着应用到某个小东西上去。
多看书
有很多的书大篇幅地在讲理论,我个人觉得比较好的学习方法就是不一定要完全懂得其中的原理,先大概理解地去看,把整个知识面都过一遍,在之后实际应用或者操作时再深入的去理解,会更加印象深刻。看书学习不一定说要你硬啃理论,但是当你入门以后可以再回过头来仔细去看。推荐两本书:周志华的《机器学习》和 Ian GoodFellow 的《Deep Learning》,江湖分别称「西瓜书」和「花书」。
到此,以上就是小编对于动手深度学习python的问题就介绍到这了,希望介绍关于动手深度学习python的1点解答对大家有用。