大家好,今天小编关注到一个比较有意思的话题,就是关于算法和python学习的问题,于是小编就整理了3个相关介绍算法和Python学习的解答,让我们一起看看吧。
没编程基础,做算法研究,python与matlab用哪个更好?
在科研方面,个人感觉Matlab还是python都可以,只要选择其中一个就要坚持下去。两个编程环境和语言各自成一个体系,编程语言都非常易懂。
从就业角度考虑,python会比Matlab较佳一些,现在各大厂的深度学习都以python语言为基础,且可以跨平台编程;而Matlab仅限于科研测试仿真验证等方面,在工业上、深度学习等应用上欠佳。
python语言发展势头迅猛,而Matlab开始拒绝国内一些有军工背景的高校,孰优孰劣一目了然。
本人以前用的是MATLAB,现在用的是Python。
做算法研究,一般要求是数学或者相关专业的,算法还是很看重数学逻辑和数学基础的,对于选择python还是选择MATLAB,我们要知道他们的差异之处。
MATLAB
一款收费的软件,很多学校都在使用,理工科的同学应该都熟悉,一般都学过这门课程。
首先,MATLAB的应用非常广泛,主要用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等,几乎可以说是无所不能。
其次,MATLAB的语言更偏向于数学,尤其像矩阵,矩阵运算等,非常适合理工科的做算法研究。
更厉害的是MATLAB的仿真功能,可视化很厉害,像飞机制造中的飞机模拟等,这个目前很多软件都不能很好的处理。
一个收费的软件,它的使用范围和使用者如此多,更能说明它的强大之处。
python
作为一个开源的软件,最近几年非常的火热,简直有超过Java的想法。
做算法研究用Matlab。
首先,有个概念要弄清楚,Matlab是一个数学软件,Python是一种编程语言,二者不是一个概念。Matlab支持的编程语言是C,c++,Fortran。
其次,算法的基础是数学,而Matlab是一个非常专业的数学软件,他提供了很多数学函数的解法,大学里高等数学里公式解起来毫无压力。
再次,算法着重考虑的是执行效率,而非编写效率,C语言等编译型语言在执行效率方面,碾压Python这种解释型语言。Python的优势在于编写效率高。例如一个功能用Python写10行代码就可以搞定,而C语言需要几十行代码。
一个语言适不适合做一件事,要看执行效率,也要看编写效率,更重要的是这个语言是否已经有了,前人写好的解决相关问你题的类库,比如,计算球体的体积,语言中有相关函数的话,我们只要调用函数,代入球的半径就可以得到体内,否则的话,我们需要先知道球的体积公式,再去实现公式,最后才能得到体积。
站在前人的肩膀上才能走的更远,最近美国这个前人不太乐意我们站在他的肩膀上了,禁用了哈工大的Matlab。
算法研究用Matlab,网络编程用Python
只想说一点:
如果说算法研究是一座大厦,那么,
编程基础,尤其是Python[_a***_]级编程基础,只是一个小小的台阶。
要做算法研究,连大厦都要攻克,还会怕一级台阶吗?
不要因为区区一点编程基础而决定你的选择。
至于具体用哪个好,要看你具体研究什么算法了。
C,C++,MATLAB,Python,Go哪个比较适合写算法?
但是参加比赛的话,可能使用c++的STL省些事情。MATLAB是科学计算语言,一般用于科学研究。Pyhton是主流动态语言,和Go都是google开发的语言。不过Python和Go更简单好用些,毕竟是比较新的语言,很容易就搭建一个服务器。Python工程师与人工智能算法工程师有什么区别?
Python工程师与人工智能工程师的区别是什么?
一是Python工程师主要是从事编程,只能算是程序员;人工智能工程师主要是从事算法研究,也称作是算法工程师。两者有本质的区别。
二是Python工程师开发编程就像走业务流程一样,很多东西都是现有的,你只需要一步一步的去敲代码,去熟悉它,并不会创造出一些新的东西;人工智能算法工程师比Python工程师更需要有良好的数学基础,因为在人工智能算法研究中会运用到许多数学知识,还要学会如何灵活运用各种框架和优化神经网络,需要你去研发它,创造出新的东西。
到此,以上就是小编对于算法和python学习的问题就介绍到这了,希望介绍关于算法和python学习的3点解答对大家有用。